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Abstract--In this study we investigate the three-dimensional (3-D) mixed convection fluid flow within a 
horizontal duct, the walls of which are assumed to be maintained at specified constant temperatures. The 
fluid flowing through the duct is assumed to be steady and laminar and the results presented are mainly 
concentrated on those obtained when using parameter values that are typically found in hydraulic fractures, 
a technique used in the oil industry to enhance the production rate of an oil well. The full 3-D governing 
equations are non-dimensionalized and simplified using a narrow gap type approximation and the resulting 
two-dimensional (2-D) governing equations are found to be parabolic in the streamwise direction. A stream 
function is introduced into the solution procedure, which consists of marching streamwise along the duct 
using a finite-difference technique. Results are found for Newtonian and power-law fluids, as well as 

Newtonian fluids with a temperature dependent viscosity. ~: 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

in this study the problem of obtaining the fluid vel- 
ocity and the temperature field as the fluid travels 
along the main body of a rectangular duct, where it 
is assumed to be two-dimensional (2-D), reduces to 
solving a parabolic equation in one-dimensional (I-D) 
space together with a second-order, non-linear partial 
differential equation. The forced convection problem 
is the well known Graetz~Nusselt problem for parallel 
plates [1, 2], and this problem can be solved by the 
use of the method of separation of variables, as shown 
by Unwin [3], which reduces the problem to one of a 
Sturm-Liouville type. In this study, however, a 
numerical procedure using finite-difference methods 
was chosen for obtaining the solution, since a numeri- 
cal method is required in order to incorporate non- 
Newtonian fluids due to the non-linear coupling of 
the equations. Examples of existing work associated 
with the Graetz-Nusselt problem include Prins et al. 
[4], where the leading order terms in the solution were 
rigorously determined. The influence of streamwise 
diffusion in the energy was included by Pahor and 
Strnad [5] and an analytical approach, which yields 
entrance region solutions with streamwise conduction 
in the energy for the uniform heat flux boundary con- 
dition, was devised by Hsu [6]. The effects of the 
buoyancy force on the Graetz-Nusselt problem were 
modelled by Ou et al. [7] using a large Prandtl number 
approximation and they identified the regions where 
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flee convection is significant and the behaviour of the 
local Nusselt number was investigated. This work is 
particularly relevant to the present study as the 
Prandtl number is large for the results presented in 
this paper. More recent work on the Graetz-Nusselt 
problem includes studies by Aparecido and Cotta [8] 
on laminar forced convection inside a rectangular 
duct. In addition, Kim and Ozi~ik [9] investigated 
conjugate laminar flow convection inside parallel plate 
and pipe geometries. Their model was subject to a 
periodically varying inlet temperature with a para- 
bolic fluid velocity profile. 

For the streamwise uniform wall temperature con- 
dition, the buoyancy effect decreases asymptotically 
once the fluid goes beyond a critical streamwise 
location, and this is because the fluid warms up to the 
wall temperature with increasing streamwise position. 
The forced convection becomes the dominant mech- 
anism far downstream [10], and the length scale over 
which the buoyancy force acts is dependent upon the 
Prandtl number and the Reynolds number. The effects 
of natural convection in vertical problems has been 
investigated [11-15]. 

Numerical simulations of mixed convection bound- 
ary-layer flows in ducts were until recently confined 
to situations which excluded regions of recirculation. 
Studies undertaken by Aung and Worku [16], describe 
how asymmetric wall temperatures lead to a skewness 
in the velocity profile and how, if the magnitude of the 
buoyancy parameter is sufficiently large, flow reversal 
can occur at the cold wall. Works by Ingham et al. 

[17] and Heggs et al. [18] describe a method of dealing 
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NOMENCLATURE 

a* height of the model of the fracture 
A matrix of known coefficients 
b* width of the model of the fracture 
b vector of known coefficients 
c* length of the model of the fracture 
g* acceleration due to gravity 
Gr' Grashof number for a generalized 

Newtonian fluid, 
p*2g*fl*(T'~w- T~b .2- , U,2¢, ,,,/K,,2 

h distance between grid nodes in the 
x-direction 

k distance between grid nodes in the 
y-direction 

K'* consistency index for a generalized 
Newtonian fluid 

n power-law index of fluid 
N' number of grid nodes in the y-direction 
p* dimensional pressure 
p non-dimensional pressure, 

p*~ U*2p/~ - p*z*g* 

13, a modified pressure, Reap 
Pr' Prandtl number for a generalized 

Newtonian fluid, 
U*"- i K , . / ~ . p . b . , ; -  i 

Re' Reynolds number for a generalized 
Newtonian fluid, 
p*,b*"-i U•2 - ' /K '*  

T* local fluid temperature 
T~* temperature of the fluid at the entrance 

to the duct 
T~* average temperature of the duct walls 
T~*~ temperature of the duct walls 
u*, v*, w* the x-, y- and z-components of 

the fluid velocity 
u, v, w non-dimensional x-, y- and 

z-components of the fluid velocity, 
u*/U*, v*/~U*, w*/~U* 

u* fluid velocity profile at the entrance to 
the duct 

U* average streamwise fluid velocity 
W vertical component of the fluid 

velocity, w Re' /Gr' 
x* coordinate measuring the horizontal 

distance streamwise along the duct 
x coordinate measuring the horizontal 

non-dimensional distance streamwise 
along the duct, x*/c* 

y* coordinate measuring the horizontal 
distance across the duct 

y coordinate measuring the horizontal 
non-dimensional distance across the 
duct, y*/b* 

-* coordinate measuring the vertical 
dimensional distance up the duct 

z coordinate measuring the vertical non- 
dimensional distance up the duct, z*/a*. 

Greek symbols 
e* thermal diffusivity of fluid 
[J* coefficient of fluid thermal exapnsion 
~,* second invariant of the rate of strain 

tensor 
~* rate of strain tensor 
6(0) the non-dimensional temperature 

dependent viscosity of a Newtonian fluid 
~, ratio of width, b*, to length, c*, of the 

duct 
q ratio of height, a*, to length, c*, of the 

duct 
0 non-dimensional local fluid 

temperature, ( T * - Tw*) / ( T~*- Tw*) 
#* fluid viscosity of a generalized 

Newtonian fluid 
p* fluid density 
p*~ reference density 
z* stress tensor 
~b vector of unknown variables. 

with flow reversals numerically for different geo- 
metries in undeveloped flows and, more recently, 
reversal of fully developed mixed convection flows in 
vertical channels were studied by Cheng et al. [19]. 

Few experimental studies exist in the field of mixed 
convection flows due to the problems that exist with 
implementing the temperature boundary conditions. 
However, Wirtz and McKinley [20] investigated the 
buoyancy effects in a laminar downflow of air between 
two vertical parallel plates and more recently, Huang 
et al. [21] performed experimental studies of mixed 
convection flows and heat transfer in a vertical con- 
vergent channel. 

Relatively little work has been performed on mixed 

convection, non-Newtonian fluid flows. Bird et al. [22] 
looked at isothermal flows and provided a review for 
the known exact solutions for the flow of a Bingham 
plastic in simple geometries, such as the parallel plate 
duct and the concentric annulus. Wilkinson [23] and 
Metzner [24] provide summaries of work in forced 
convection flows on non-Newtonian fluids prior to 
1964, whilst McKillop [25], Mahaligan et al. [26] and 
Joshi and Bergles [27] have since extended the work 
further. Unwin [3] obtain solutions for a power-law 
fluid for the mixed convection model of a semi-infinite 
fracture using finite-difference and iterative techniques 
and Patel and lngham [28] studied the three-dimen- 
sional (3-D) problem of combined convection in a 
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vertical eccentric annulus for Newtonian fluids, 
Bingham plastics, power-law fluids and the Herschel- 
Bulkley model. 

In the present study, we undertake the problem of 
estimating the temperature and fluid flow profiles that 
exist in a horizontal rectangular duct, the walls of 
which are assumed to be maintained at specified con- 
stant temperatures. As an example, the particular situ- 
ation of fluid flow in a vertical hydraulic fracture is 
used to illustrate the results. Hydraulic fracturing, 
introduced into the oil industry in 1947 [29] is an 
important technique for enhancing petroleum reserves 
and increasing the production rate of an oil well. Oil 
and/or gas pockets in the earth are not always of a 
concentrated nature and the areas where the oil and/or 
gas are to be found are called pay zones. In the case 
of the oil and/or gas being not particularly con- 
centrated in the pay zone it is not efficient to try and 
collect the oil and/or gas through a well bore alone. 
To increase the production rate, and thus make the 
well more cost effective, a greater surface over which 
to collect the oil and/or gas is created. This greater 
surface area is obtained by the fracturing process. In 
this process a fracturing fluid is pumped into a res- 
ervoir from a wellbore at the appropriate rates and 
pressures to both wedge and extend the fracture 
hydraulically. The fluid is mixed with a propping agent 
(particles), called a 'proppant'. This fluid carries the 
proppant deep into the fracture. At the end of the 
process the fluid is removed from the fracture, by 
leakoff into the formation and/or flowback into the 
wellbore, and a propped fracture remains. This 
propped fracture represents a highly conductive path 
for oil and/or gas to flow easily from the extremities 
of the formation into the well. Since we intend to illus- 
trate the results by using the specific case of fluid 
flow through a hydraulic fracture the values of the 
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Table 1. Typical values of the parameters used in hydraulic 
fracturing processes 

Fluid density, p* O(103) kg m 3 
Average streamwise fluid velocity, U* O(10-~) m s 
Coefficient of fluid thermal expansion, fl* O(10 .-4) :~C 
Thermal diffusivity of fluid, c~* O(10 7) m: s 
Newtonian fluid viscosity,/~* O(10 t) Pa s 
Temperature of fracture walls, T*, 100-165~:C 
Temperature of fluid at fracture entrance, T,.* 40~65°C 

parameters appearing in the governing equations and 
the boundary conditions are chosen to be typical oil- 
field parameter values. The length of the fracture, c*, 
is assumed to be O(102)m, whereas the fracture width, 
b*, is assumed to be much smaller than the fracture 
length and is typically O(10-2)m. The height of a 
typical fracture, a*, is O(10)m. The typical values 
of the other parameters used in hydraulic fracturing 
processes are given in Table 1. 

The typical values for the Reynolds, Grashof and 
Prandtl numbers for fluids flowing in fractures and 
these values are given as follows : 

O(1) < Re' < O(10) 

O(10 t) < G r , < O ( 1 )  

O(10 -~) < Pr" < O(103). (1) 

The 3-D, horizontal duct is modelled using a car- 
tesian coordinate system (x*,y*, z*), see Fig. 1, with 
x* measuring the horizontal distance along the duct, 
y* the horizontal distance across the duct and z* the 
vertical distance up the duct and where the origin is 
at the bottom right-hand corner of the entrance to the 
duct, The temperature of the walls of the duct, T'd, is 
assumed to be a specified constant value, namely, the 

Primary 
Flow 
Direction 

Fracture 
Height 

a* 

J 

Wall 
Temperature 

/ 

Velocities z 

Fracture Temperature y*~ |I. . .~.~ x* 
Width T* ( <T~ a ) Coordinates 

b* 
Fig. 1. A model of a fracture. 
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average temperature of the duct walls, T~*, and at the 
entrance of the duct the temperature of the fluid T~*is 
assumed to be less than Tw*. The height of the duct, 
a*, the width, b*, and the length, c*, are taken to be 
constant. 

Fluids with various rheologies are studied, includ- 
ing Newtonian and power-law fluids, as well as New- 
tonian fluids with a temperature dependent viscosity. 
The general approach to the solution of this 3-D prob- 
lem is to make the assumption that the width and 
height of the duct are much smaller than the length of 
the duct, thus enabling, after non-dimensionalization, 
a lubrication type approximation to be made and the 
quantities appearing in the equations to be asymp- 
totically expanded. The order of the terms in each 
of the governing equations are investigated and the 
magnitudes of the non-dimensional numbers created 
by the non-dimensionalization studied in order to sim- 
plify the full 3-D equations to a more manageable, 
two-dimensional (2-D) form. 

2. FORMULATION OF THE TWO-DIMENSIONAL 
MODEL 

Initially the full 3-D governing equations, namely 
the continuity, momentum and energy equations, are 
analyzed. The governing equations are non-dimen- 
sionalized using the duct length, width and height to 
scale the x*, y* and z* coordinates, respectively, i.e. 

x* = c*x y* = b*y z* = a*z (2) 

where the superscript * denotes a dimensional quan- 
tity. The continuity equation is nondimensionalized 
using the average streamwise fluid velocity, U*, as a 
fluid velocity scale in the streamwise direction and 
the cross-stream components of the fluid velocity are 
scaled so as to satisfy the continuity equation, namely : 

u * =  U*u v*=e,U*v w*=qU*w (3) 

where 

b* a* (4) g = C  ~ II -- C*" 

The other relevant scalings are given by 

, ,  

r *  = T :+  (To*- T:)O ~,* = K'* \U*] a(O)9"- 

/ U * 5  ° U* 

p ,  P*m U*2 
= - - p - p . z ' q *  (5) 

g 

where T* is the local fluid temperature, 0 is the non- 
dimensional local fluid temperature, /~* is the fluid 
viscosity, K'* is the consistency index of the fluid, n is 
the power-law index, 6(0) is the Newtonian viscosity 
dependence on temperature, ~, is the second invariant 
of the rate of strain tensor, v* is the stress tensor, ~* 

is the rate of strain tensor, p* is the pressure, Pm is the 
reference density and g* is the acceleration due to 
gravity. It should be noted that the viscosity has been 
scaled so as to describe the viscosity of Newtonian or 
power-law fluids, or Newtonian fluids with a tem- 
perature dependent viscosity. In the limit ofn = 1 and 
3(0) = l, the viscosity, #* in expression (5) is that of 
a Newtonian fluid and K'* becomes the Newtonian 
viscosity. Alternatively, in the limit 6(0) = 1 the vis- 
cosity is that of a power-law fluid, whereas in the limit 
n = 1 the viscosity is that of a Newtonian fluid whose 
viscosity varies with temperature. With these scalings 
we can obtain the non-dimensional, governing equa- 
tions for the flow of fluids through rectangular ducts, 
namely 

~ + ~ + ~ = 0 (6) 

{ &  ~u Ou) 
eRe' U~x x+vq.,~ y + w ~ 

- ; + E  + .... + - 7 =  (7)  
(/x ('~x,~ [~), q (;z 

&, &, & )  
eRe' u ~  ' -  + w ~  

v x  +t  i~v 

1 ?r,i 
- < ? P + ~ = + ~ , ~ T  + c . ~  - ~  (8) ~:2 ~3, r/ vz 

[ ~w (?w ~w) 1 @ e&: ,  
eRe" lU~,x+V~y+W~T~z~ = , 2 , ? 7 + ,  (~x 

1 8%. ~; ~z-- Gr' 
+ - ~ - +  -° 0 

q o3' t72 (?z ~lRe" 

f ~0 ~0 ~0) 
~:Re'Pr" ~u,s S , - -  + w ~  

( ~x + ~ &  , 

~20 720 ~:2 ~2 0 

= ~:- ,~,5 + - -  + ¢3z 2 

(9) 

(lO) 

U.n I K'* 
Pr' - (12) 

~*p*b *~-I 

p .b . , ,U.2  ,, 
Re' - (13) 

K'* 

respectively, where fl* is the coefficient of thermal 
expansion of the fluid and ~* is the thermal diffusivity. 
Equations (6)-(10) are to be solved along with the 
integral continuity condition, which ensures con- 
tinuity of fluid and is given in non-dimensional form 
by 

>.2+,*/¢*¢T* Te~b *>,+ I U.2, ,, 
Gr' = (11) 

K,*2 

where fi = Re'p is the modified pressure and Gr', Pr' 
and Re' are the Grashof, Prandtl and Reynolds num- 
bers defined by 
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L l i > = ~ j u d y d z = 1 .  (14, 

The non-dimensional forms of the constitutive equa- 
tion and the rate of strain tensor are given by 

= 

= r"- '6 (o )~  (15) 

8u gu Ov e Ou Ow 
28 ., - -~- _~_ ~2 8Z ('X 

8u + g~ Ov 8v e 2 Ov Ow 
- -  , - - -  

E 8u 8w ~2 8v Ow 3w 
~ + g r l 3 x  q & + r l O y  2e?~- z 

respectively. 

(16) 

Equations (6)-(10), along with the integral con- 
tinuity condition (14), are now to be solved along with 
the boundary conditions, namely, the no-slip con- 
dition on each of the four bounding walls, symmetry 
about the plane y = 1/2, 0 < z < 1, x > 0 and the 
temperature of the four bounding walls is assumed to 
be constant and equal to the average temperature of 
the walls, T*. Thus, the non-dimensional initial and 
boundary conditions can be summarized as follows : 

x = O : u = u , ~  v = w = 0  0 = 1  

y = 0  0 < z < l  x > O : u = v = w = O  0 = 0  

y = l  0 < z < l  x > O : u = v = w = O  0 = 0  

z = 0  0 < y <  1 x > O : u = v = w = O  0 - 0  

z = l  0 < y < l  x > O : u = v = w = O  0 = 0  

1 8u 8w 00 
. v = ~  O < z < l  x > O : ~ = v  8v &,=O. 

(17) 

By assuming that the quantities e and ~/ are small 
and that 0 < e, << q << 1, we can proceed to expand the 
variables, u, v, w,/7, 0, ~ and • in powers of ~ and r/. 
By doing this we have effectively performed a double 
expansion of the variables appearing in the governing 
equations in the following manner : 

F =  Foo +qFot +rl2Fo2 + . . . .  

+e,F,o +etIFl ~ +eqZFt2 + . . . .  

+e2F2o+e"-q~ + e)r/2F22 + . . . .  (18) 

where F =  u, v, w, /7, 0, 9 and T. By substituting 
expression (18) into the non-dimensional governing 
equations (6)-(10) we may proceed to set coefficients 
of powers of e to zero in order to obtain the leading 
order equations and if we now look for solutions 
having a 2-D profile in regions not in the vicinity of 
the top and bottom duct walls and assume that the 

quantities u, v, w and 0 are independent of z, we obtain 
the following 2-D governing equations 

0 - 

~b/Oq (~VOq O-~-y + - ~ - y  = 0  (19) 

0 = -- (~,~- -~- ~ 9gql 6(00q) (20) 

0/~20 ~/721 2 6~/722 
8>,  ' Oy 

¢,x\  ) O(O°q)37-y )÷2~y(3:"{)q- ~(Ooq) ~ )  

(2l) 

1 0/700 1 ¢4/701 0/702 
0 -  

tl 2 c?z ~1 0z 0z 

-~ '~U ~0q . '  ) q~e,e, 00q (221 

000q ~00q~ 0200q (23) 
 .Re'P< o,, 

where F0q = Foo+qFol +q2Fo2+O(q3) tbr F = u, v, w, 
/7 and 0 and terms with coefficients of ere '  have been 
neglected since, for our example of fluid flow in a 
hydraulic fracture, we are only looking for an order 
of magnitude estimate and eRe' <~ O(10 3) for par- 
ameter values within the typical oilfield range. It 
should be noted that we have not assumed that/7 is 
independent of z so that the effects of the top and 
bottom bounding walls can be taken into account. 

3. THE SOLUTION PROCEDURE 

Firstly, for F = u, v, w, /7 and 0 we look for the 
leading order solution in t/which satisfies the bound- 
ary conditions, so we set F0q = Fo0 in equations (191- 
(23). Then by examining the cross-stream components 
of the momentum equation with respect to the pres- 
sure terms we find for e << r/<< 1 that 

0/72, ~/722 0/700 @0, 
- - = 0 ( 2 4 )  

3), 0v & 3z 

approximately and hence/70o =/700(x). Thus, we can 
write P0o in the form 

/700 = f (x )  (25) 

where J(x) is an unknown function of x. Upon sub- 
stitution of equation (25) into equation (20) and inte- 
grating once with respect to y we obtain 

- -  0 x ( . f ( X ) ) y - ~  ~(000)]}~)O ' 0vU00 -~- h ( x )  = 0 (26) 

where h(x) is an unknown function of x, since we have 
already assumed that u00 is independent of z. We can 
now use the symmetry condition in expression (17) at 
y = 1/2 to find Ox(f(x)) in terms of h(x), namely 
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-tJ,(f(x))+2h(x) = 0 

and hence, equation (26) reduces to 

(27) 

h(x)( I-2y) + s(e”,)y”o- ’ a, 240” = 0. (28) 

The governing equations can be put in a more man- 
ageable form by expressing PO0 as a function of the 
temperature and by using Picard iteration on the ver- 
tical pressure gradient term, thereby decoupling the 
vertical component of the momentum equation from 

the x-component of the momentum equation. This 
can be achieved by integrating equation (22) once 
with respect to y to obtain 

atively at each x-location before proceeding stream- 
wise along the duct. Using a regular grid 
and central differences throughout, along with the 
Crank-Nicolson method [30], equations (32) and (33) 
can be written in finite-difference form as follows : 

= 0 (34) 

e 0, ,,,, -&I,,-I,, $!.,+I-*L-I 
h 21i 

s(e,“)$); a, W”(, = - + $z- 

(29) 

and after squaring and adding equations (28) and (29) 
we obtain 

zz 

(30) 

1 &lo,.,+ I - %o,, + &,,,- I 

2eRe’Pr’ k2 

(35) 

However, equations (19))(21) and (23) remain 
coupled and have to be solved simultaneously. 

By introducing the stream function given by 

a* a$ 
u “,, = - and uoO = -- 

aY ax (31) 

the continuity equation (19) is automatically satisfied 
and equations (20) and (23) reduce to 

k(x)(l-2y)f6(8,,)j”,;’ 3 = 0 (32) 

(33) 

where h and k are the distances between grid points 
in the x- and y-direction, respectively. At any given x- 
location, h(x) is constant and can be found from the 
stream function boundary conditions at the duct 

walls, namely 

$=a,.$=0 at y=O O<.U<CL (36) 

$=l a,$=0 at y=l O<x<z. (37) 

By evaluating equation (34) at the wall y = 0, we find 

that h(x) is given by 

Equations (32) and (33) represent a coupled set of 
non-linear, partial differential equations. Since the Upon substitution of expression (38) into equation 

streamwise coordinate appears only as a first-order (34) we obtain 

derivative, the equations are parabolic in nature and 

can be solved numerically using a marching pro- 
AJ/=b 

cedure. Thus the resulting equations are solved iter- where A and b are given by 

-2+w(-2+4k) "01.1 1 0 . * . 

1 + ~(4m.") -(-2+8k) -2 1 0 * * 
001.2 

A= 
$+2+ 12k) 1 -2 1 * * 

001.3 

. . etc. * * 

I b(eoo,o) (-2+4(n_f)k) . . 
&4lor,N’- I) 

0 1 -2 

b= 

0 

0 

-1 

(39) 

(40) 
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The matrix A is not diagonally dominant and thus 
rendering iterative methods on equation (39) sus- 
ceptible to convergence difficulties. Although equa- 
tion (39) can be solved by inverting the matrix A 
directly, this results in an excessive amount of com- 
puter time and, therefore, a banded solver has been 
used. Thus, equations (34) and (35) have been solved 
by marching streamwise along the duct, solving equa- 
tion (35) at each new x-location to obtain a first 
approximation for the temperature, then using this 
approximation to find an estimate for the viscosity 
and hence the stream function from equation (34). 
This solution is iterated upon until the sum of the 
absolute difference between the solutions obtained 
from two consecutive iterations is less than a very 
small quantity, say 1 0  _ 7  . Once this is achieved it is 
assumed that converged solutions have been obtained. 
Then the solution at the next x-location is sought 
using the values calculated at the previous x-location. 
By continuing in this fashion the stream function and 
the temperature can be found at all locations in the 
developing region. 

If we now proceed to the vertical component of 
the momentum equation we find we have a vertical 
pressure gradient that may vary with x without affect- 
ing the two-dimensionality of the streamwise com- 
ponent of the fluid velocity, since/~02 is of a smaller 
order than P00. Although Woo is independent of z, to 
be consistent with the boundary conditions on z = 0 
and 1 we can enforce that the local vertical volume 
flux of fluid at any x-location is zero, namely 

i l dy = 0 (41) WOO 

,=  0 

and we may now obtain the solution for the vertical 
component of the fluid velocity. We can split woo into 
two components, namely 

Woo = woo + W~o (42) 

and we may write the vertical component of the 
momentum equation (22) as 

+{~( '2"°° '6(0°")~w'~°~-~0°°}  cty J (43) 

We can used central finite differences techniques to 
solve the equation 

0 ~y(7'(~o ~}~w"\ fiRe'Gr'o (44) = '6(0oo) v / -  oo 

and by substituting w]0 for Woo in expression (41), we 
obtain 

~ ' w~0 d) = B (45) 
. . = 0  

where B is a constant for each x-location which can 
be found using Simpson's rule. Now since we have 
obtained v00 and U0o, we find from equation (21) that 
~;/Oy = 0 for all values o f iand j .  Hence, by adopting 
Simpson's rule and applying the boundary conditions 
(17) to the remainder of equation (43), namely 

0 - + ~'"oo' 6 ( O o o ) ~ j  (46) 

we obtain woo in terms of ~Po2/~z. In order to satisfy 
the integral condition (41), we may now write 

f l Wo 0dy = - B  (47) 
= 0  

and by applying Simpson's rule once more find 
8po2/Oz. The vertical component of the fluid velocity 
is now determined from expression (42). 

However, if we return to equation (22) for ducts 
where the duct height is approaching the duct length, 
i.e. for fi approaching unity, we find that it is not true 
that ~oo/~Z (or ~o~/~z)= 0. In this case P00 becomes 
dependent upon the z-coordinate and we have the 
situation that the amount of fluid being pushed down- 
wards by the buoyancy force within the fluid is 
sufficiently great to create pressure gradients, due to 
the wall at z = 0, which are large enough in the vertical 
direction to affect the streamwise pressure gradient. 
In this case, the streamwise pressure gradient in the x- 
component of the momentum equation (20), namely 
c~Ooo/c~x, will depend upon the z-coordinate, thereby 
rendering 2-D leading order solutions for the 
streamwise component of the fluid velocity of the 
form Uoo(X, y) unobtainable from equation (20). 

If we look at typical parameter values for hydraulic 
fractures, see Section 1.1, we find that fi ~ O(10 ~) 
and since the leading order term in question, namely 
~!~o2/~z, has a 1/fi 2 as its coefficient, we may conclude 
that the two-dimensional solutions obtained in this 
work will be a reasonable approximation (i.e. correct 
to within about 1%) to the fluid flow found in 
hydraulic fractures in the regions not in the vicinity 
of the top and bottom bounding walls. 

4. RESULTS AND DISCUSSION 

In this section the results for a typical set of oilfield 
parameter values for various fluids are presented for 
the fluid flow in a rectangular duct. The initial fluid 
velocity profile, u~=, was chosen to be the fully 
developed fluid velocity profile, which will, of course, 
depend upon the value of n. Except very close to the 
entrance to the duct this will be a good approximation 
due to the typically high Prandtl number for the case 
of fluid flows in a hydraulic fracture which results in 
the fluid boundary-layer developing faster than the 
thermal boundary-layer at the entrance to the duct. 
The number of iterations needed at each x-location to 
obtain accurate solutions to the governing equations 
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Fig. 2. Temperature distribution across the duct for various values of the distance along the duct, 
X = x/(eRe'Pr'), for a Newtonian fluid. 

made it desirable to vary the x-step length, h, in order 
to reduce the computing time. The first 10 x-steps 
were solved with h = 10 6, the following 100 steps 
with h = 10 5 and the remainder of the results were 
calculated with h = 10 4. All the results were cal- 
culated with N' = 200, where N' is the number of grid 
points in the cross-stream plane, and comparisons 
with finer and coarser grids indicated that the solu- 
tions obtained were within the desired convergence 
requirements. 

Since the parameters are chosen to take values in 
or near the range found in hydraulic fracture treat- 
ments, we take the buoyancy parameter, Gr'/~lRe', to 
be in the range 0.1 ~< Gr'/tlRe' <~ 10, the parameter 
eRe'Pr' to be in the range 0.1 ~< eRe'Pr" <~ 10 and 
r = 10 4 The ratio of the duct height to the duct 
width, r//a, is assumed to be O(10 ~). 

4.1. Newtonian and power-law fluids 
For a Newtonian fluid with a constant viscosity it 

is found that the streamwise pressure gradient is a 
constant and, therefore, the u and ~, components can 
be found analytically and are given by 

u = 6 y ( 1 - y )  t~=0 (48) 

respectively. 
Figure 2 shows the non-dimensional temperature 

distribution for a Newtonian fluid for various values 
of the distance along the duct, x/(eRe'Pr') .  It should 
be noted that for a Newtonian fluid the duct width 
appears as a squared quantity in the parameter 
eRe'Pr', whereas the quantities U*, c* and c~* appear 
as linear factors, and hence a small change in b* can 
have a large effect on the temperature distribution and 
the length of the developing region. Since eRe'Pr" is 
the only parameter that appears in the energy equation 
(33), and only as a coefficient of the inertia term on 
the left-hand side of equation, we can re-scale the 
x-coordinate by taking X = x/(eRe'Pr')  and so the 
parameter eRe'Pr" is scaled out of the equation. It is 

observed that the initial uniform temperature profile, 
namely 0(0,y) = 1 asymptotically approaches 
O(o~,y) = 0 as the distance along the duct increases. 
Further, it is found that the length of the developing 
region for a fluid to be within about 1% of the tem- 
perature of the duct walls is x/(eRe'Pr')  = 0.676. 

The parameter Gr'/Re' depends linearly on the 
quantities U*, 7~, T~w, ~*, p* and K* and quadratically 
on b*. Hence, small variations in the duct width may 
result in large differences in the buoyancy force within 
the fluid. As was the situation for the parameter 
~:Re'Pr' in the energy equation, we can scale the par- 
ameter Gr'/Re" out of the vertical component of the 
momentum equation by re-scaling the quantities woo 
and ~!~o2/(~z with Gr'/Re'. The vertical component of 
the fluid velocity profiles is shown in Fig. 3 for various 
values of the distance along the duct, x/(eRe'Pr') .  It 
is observed that the fluid moves upwards near the hot 
walls and downwards in the central region of the duct. 
Further, as the fluid moves streamwise this effect 
increases in magnitude until a critical x-location is 
reached, whence the vertical component of the fluid 
velocity asymptotically decreases in magnitude to 
zero. We note that the vertical component of the fluid 
velocity is approximately three orders of magnitude 
smaller than the streamwise component of the fluid 
velocity. 

Figures 4 and 5 show comparisons between the 
solutions obtained for the vertical component of the 
fluid velocity for a Newtonian fluid on the plane 
z = 1 / 2 ,  0 < y < l  at the locations x=0 .01  and 
x = 0.110 respectively, on using the 3-D model as 
described by Wood et al. [31] for duct height to width 
aspect ratios of 1, 2, 4, 8 and 64 and the solutions 
obtained at the corresponding locations using the 2-D 
model as described in this paper, where the parameters 
ere ' ,  ~Re'Pr' and Gr'/(rlRe') are 0.001, 0.5 and 1, 
respectively. In each figure we find that the solutions 
obtained with the 3-D model approach those obtained 
with the 2-D model as the duct height to width aspect 
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Fig. 3. Vertical component of the fluid velocity profiles, W = wRe'/Gr', across the duct for various values 
of the distance along the duct, X = x/(eRe'Pr'), for a Newtonian fluid. 
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0.5 and 1, respectively. 

ratio increases. In Fig. 4, we find that the solutions in 
each case are almost identical, except for the case of  
the square duct geometry. However,  in Fig. 5 we find 
that the solutions obtained for the vertical component  
of  the fluid velocity with the three-dimensional model 
increase in magnitude as the aspect ratio increases to 
about  four, after which the solutions asymptotically 
decrease in magnitude with increasing duct height to 
width aspect ratio towards the solutions obtained with 
the 2-D model. This is due to the influence of  the heat 
transfer from the bounding walls at z = 0 and 1 on 
the local temperature field reaching a critical level, 
with respect to the local temperature gradients within 
the fluid, at a value of  the duct height to width aspect 
ratio of  about  four. 

It we now look at the fluid velocity field for power- 
law fluids, we find that the streamwise and horizontal 

cross-stream components of  the fluid velocity are vir- 
tually identical at each x-location along the duct, as 
in the Newtonian case, and approximately equal to 
the fully developed initial u and v-velocity profiles 
specified at the entrance o f  the developing region. 
Figure 6 shows the variation of  the vertical component  
of  the fluid velocity across the duct at different x- 
locations for a power-law fluid with a power-law index 
equal to 0.5, where Gr'/Re" = 1 and ~Re'Pr' = 1.0. We 
can see that, as for Newtonian fluids, the fluid moves 
upwards near the walls at y = 0 and l and downwards 
in the central region of  the duct. As the local fluid 
temperature asymptotically tends towards the tem- 
perature of  the duct walls with increasing values o f  x, 
the magnitude of  the vertical component  of  the fluid 
velocity asymptotically decreases towards zero. For  
power-law fluids with n < 1, we find the increase in 
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Fig. 6. Vertical component of the fluid velocity profiles across the duct at various x-locations along the 
duct for a power-law fluid with n = 0.5. 

non -Newton ian  behaviour  as n decreases results in 
more  'peaked '  and  ' f lat ter '  profiles near  the duct  walls 
and  in the central  region of  the duct, respectively. We 
note  also tha t  the magni tude  of  the m a x i m u m  vertical 
c o m p o n e n t  of  the fluid velocity in Fig. 6 is larger than  
in the cor responding  Newton ian  case. This is because 
the viscosity decreases with decreasing values of  n in 
the regions near  the walls a t  y = 0 and  1 due to the 
large shear rates. We  find tha t  the opposite is t rue for 
power-law fluids with  n > 1, with  the profiles of  the 
vertical c o m p o n e n t  of  the fluid velocity becoming 
more 'peaked '  in the central  region of  the duct  and 
'f latter '  near  the walls at  y = 0 and  1 and  the mag- 
nitude of  the vertical componen t  of  the fluid velocity 
at  a par t icular  x- locat ion becoming  smaller than  those 
found in the cor responding  Newton ian  case. Again,  

we find good agreement  with  the results obta ined  with 
the 3-D model  of  W o o d  et al. [31]. Figure 7 shows a 
compar i son  between the solutions obta ined  for the 
vertical c o m p o n e n t  of  the fluid velocity for a power- 
law fluid with n = 0.5 on  the plane z = 1/2, 0 < y < 1 
at  the x- locat ion x = 0.01 using the 3-D model,  as 
described by W o o d  et al. [31], for duct  height to width  
aspect rat ios of 1, 2, 4, 8 and  64 and  the solutions 
obta ined  at the cor responding  locat ion by the 2-D 
model of  this paper,  where the parameters  ere ' ,  
~:Re'Pr' and Gr'/(rlRe') take the values 0.001, 0.5 and  
1, respectively. 

Fo r  power-law fluids we can re-scale x with the 
parameter  ~:Re'Pr' in the energy equa t ion  (23) and  
re-scale Woo with the pa ramete r  Gr'/(rlRe" ) in the z- 
componen t  of  the m o m e n t u m  equa t ion  (22) and  
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Fig. 7. The variation of the vertical component of the fluid velocity for a power-law fluid as calculated 
using the two- and three-dimensional models for various values of the duct height to width aspect ratio on 
the line given by z = 1/2, 0 < y < 1, x = 0.01, where the parameters n, ere', eRe'Pr" and Gr'/(qRe') are 

0.5, 0.001, 0.5 and 1, respectively. 

obtain solutions for the temperature distribution and 
the vertical component  of  the fluid velocity. For  a 
power-law fluids with a fixed value of  n we find that 
with these scalings, the temperature distribution and 
the vertical component  of  the fluid velocity are almost 
identical for all values of  the parameters ~Re'Pr' and 
Gr'/(qRe') within the range of  values investigated in 
this paper. 

4.2. Newtonian fluids with a temperature dependent 
viscosity 

For  a Newtonian fluid with a temperature depen- 
dent viscosity, as discussed by Wood et al. [31], the 
buoyancy driven motion is not the only cross-stream 
motion since fluid is being drawn towards the top and 
bot tom bounding walls of  the duct in order to satisfy 
the continuity of  fluid. Thus, when the fluid has a 
large temperature dependent viscosity, this cross- 
stream motion cannot be estimated using this 2-D 
model. 

5. CONCLUSIONS 

The full, steady, 3-D, laminar, mixed convection 
flow of fluids in a horizontal duct of  constant width 
and constant wall temperatures has been examined. 
By performing a double asymptotic expansion in 
terms of  the two aspect ratios of  the duct, namely the 
parameters E and r/, and setting all the terms involving 
~/~z and ~2/~z2 to be identically zero, we are able to 
obtain a 2-D model such that for q << 1 the vertical 
pressure gradient may depend upon x without 
destroying the two-dimensionality of  the governing 
equations. For  Newtonian and power-law fluids, the 
results obtained with this 2-D model are found to be 
in good agreement with the full 3-D solutions which 
were obtained previously in regions of  the duct not in 

the vicinity of  the top and bot tom duct walls as the 
duct height to width aspect ratio increases. However,  
it should be noted that for Newtonian fluids with a 
large temperature dependent viscosity, this 2-D model 
cannot predict the fluid flow since a buoyancy driven 
flow is not the only cross-stream motion for these 
fluids. 

For  ducts where the height is sufficiently less than 
the length, the 2-D results obtained in this paper are 
a good approximation for the fluid flow in 3-D ducts 
in regions of  the duct not  in the vicinity of  the top 
and bot tom duct walls. However,  as the duct height 
approaches the magnitude of  the duct length, the 2-D 
model investigated breaks down due to the vertical 
pressure gradient approaching the order of  the 
streamwise pressure gradient. In this case, the simpli- 
fying double expansion procedure breaks down and 
2-D solutions for the fluid velocity and temperature 
fields cannot be calculated. 
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